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Abstract
With the ever increasing applications of machine learning algorithms many new challenges, beyond

accuracy, have been raised. Among them, and one of the most important ones, is robustness against ad-
versarial attacks. The persistent impact of these attacks on the security of otherwise successful machine
learning algorithms begs a fundamental investigation. My research aims at building a foundation to sys-
tematically investigate robustness of machine learning algorithms in the presence of different adversaries.

Two special cases of security threats, which have been the focus of many studies in the recent years, are evasion attacks and
poisoning attacks. Evasion attacks occur during the inference phase and refer to adversaries who perturb the input to a classifier
to get their desired output. Poisoning attacks occur in the training phase where an adversary perturbs the training data, with the
goal of leading the learning algorithm to choose an insecure1 hypothesis. Following, I will first explain my work on evasion and
then poisoning attacks. I will also discuss the implications of my work to randomness extractors and coin tossing protocols. I
will conclude by stating my future research plans.

Inference-time Attacks
As mentioned above, evasion attacks are one of the important attacks that happen during inference phase. The usual objective of
an evasion attack is to degrade the overall performance of the model by perturbing the test instances. in the literature, there exist
various definitions of robustness of classifiers in the presence of evasion attacks. Although all these definitions seem to capture
the same phenomenon, in [DMM18], we showed that they sometimes lead to significantly different results. However, Adding an
stability assumption over the ground truth, all of these definitions converge to a single definition where the goal of adversary is
to push instances to the error region of the target classifier. The ground truth is usually stable in the practical applications where
evasion attacks are relevant. Thus, we take the error region definition as the default definition of adversarial risk in our studies.
Quantifying adversarial risk then leads to identifying the degree of security of a classifier against evasion attacks.

Inherent upper bound on the robustness of classification against evasion attacks Persistence of adversarial examples has
raised a serious concern regarding possibility of implementing a robust machine learning algorithm. To investigate this important
issue we posed a research question. In particular, we asked, is there an upper bound on the robustness of machine learning
algorithms against evasion adversaries? Alternatively, is there a lower bound on the power of evasion adversaries? We attended
to this questions in a series of publications [DMM18; MDM19; MZME19]. In [DMM18], we showed an inherent upper bound
on achievable robustness in the presence of evasion adversaries, with sublinear perturbation, when the instances are drawn from
uniform hypercube {0, 1}n. In particular, we showed that for any classifier with a constant error rate (e.g. 0.01), there is an
adversary who changes only O(

√
n) bit of the inputs increasing the error of the classifier to almost 1. Our bounds, which were

based on an isoperimetric inequality for hamming cube, were independent of the structure of the classifier in use.
In a follow up work [MDM19], we generalized this upper bound to many more metric probability spaces. Explicitly, we drew

a connection between the robustness of learning algorithms and a well-studied mathematical phenomena known as concentration
of measure. We showed that if the metric probability space of the underlying input distribution is well concentrated and the
trained hypothesis has some non-negligible error, for most of the instances, there exist perturbations with sub-linear magnitude

1Insecure could refer to different criteria in different scenarios.
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which when applied to that instance, cause the classifier to output a wrong label. The concentration of measure phenomenon,
which is tightly related to isoperimetric and optimal transport inequalities, states that for many natural metric probability spaces
(e.g. all so called Lévy families) and for any subset with a constant measure, almost every point sampled from the measure
has sub-linear distance from that subset. There are many mathematical results on the concentration of natural metric probability
spaces, such as product distributions under hamming distance, Gaussian distribution under euclidean distance, product of unit
spheres under the euclidean or geodesic distance and more. We showed that any such concentration inequality for a metric
probability space will give an upper bound on achievable robustness of any classification problem where instances are coming
from that probability space.

Our result in [MDM19] leveraged the fact that the target classifier have some initial error. A natural question that follows
is whether we can decrease the error rate of the classifier so that the effect of the adversaries are not as severe. In other words,
can we mitigate these attacks by training better classifiers with smaller error rate? To answer this question, in [DMM19], we
studied the effect of evasion adversaries on the required sample complexity of learning algorithms. We showed that there exist
a learning problem which requires exponential sample complexity to achieve small adversarial risk. However, in the absence of
adversaries, the same problem can be learned with polynomial number of samples.

Black-box estimation of concentration: Extending theoretical upper bound to real world distributions. Although our
work [MDM19] showed the connection between concentration of measure and adversarial robustness, it was still unclear whether
real-world data distributions are concentrated enough to justify the existence of adversarial examples. The next immediate
question then was whether we can translate the theoretical upper bounds to the real world applications. In a follow up project
[MZME19], we introduced a new method to estimate concentration of measure for an arbitrary metric probability space, using
i.i.d. samples. We designed an empirical concentration problem and proved that the solution of this empirical problem converges
to the solution of the actual concentration problem asymptotically. We also provided a heuristic algorithm to solve the empirical
concentration for estimating concentration of measure on image datasets such as MNIST and CIFAR10. Our results showed that
even though there are cases where the robustness of the algorithm in practice is very close to the achievable upper bounds, for
some cases, the gap is larger. This finding suggested that concentration of measure alone cannot fully explain the existence of
adversarial examples in some of the practical scenarios.

A cryptographic approach: Can computational limitation of adversaries help robustness? An important open question
about security of machine learning is whether one can rely on the fact that adversaries are computationally bounded and design
secure schemes. This technique is what enables many constructions in cryptography which are provably secure as long as the
adversary can only compute bounded number of operations. Inspired by the success of the field of cryptography in exploiting
computational limitation of adversaries, I studied the power of computationally bounded evasion and poisoning adversaries in a
series of work [MM19; EMM20; GJMM20].

Based on the lower bounds proved in [MDM19], we already knew that information theoretic adversaries are very powerful.
However, all those results are existential and do not address the computational aspects of finding adversarial examples. In
[MM19] we showed that if instances are coming from a product distribution, it is computationally feasible to find adversarial
examples with O(

√
n) perturbations (under Hamming distance) as long as the adversary has black-box access to the hypothesis.

In this paper, we introduced a new notion called Computational Concentration of Measure and showed that it is sufficient for
getting polynomial time evasion attacks.

This result showed a barrier against leveraging on hardness assumptions to design learning algorithms that are robust against
polynomial time adversaries. Yet, there was a gap between the power of algorithmic attacks of [MM19] and the existential attacks
of [MDM19]. In a follow up work [EMM20], we designed an algorithm that closed this gap and obtained asymptotically optimal
bounds in polynomial time. We also showed how to extend computational concentration of measure to other metric probability
spaces by introducing a special type of embedding that preserves computational concentration of measure. In other words, our
work shows that the best existing lower bounds on the power of information theoretic and computationally bounded adversaries
are equal for certain metric probability spaces.

Although this might sounds disappointing, it does not imply that computational hardness assumptions cannot be helpful.
Considering that there is a gap between existing algorithm’s robustness and theoretical upper bounds, computational hardness
might help closing this gap. In fact, in [GJMM20], we constructed a learning problem which its computational robustness was
much higher than its information theoretic robustness.
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Training-time Attacks
Another category of attacks are poisoning attacks that occur during training. Poisoning adversaries could have different goals in
mind. For instance they could aim for reducing the overall performance of the trained models or they could attempt to change
the prediction of the trained model for a specific instance (Aka. indiscriminate attacks and targeted attacks2). We modeled the
malicious goals of the poisoning adversaries in a unified and abstract way where we assumed an arbitrary bad property over the
hypothesis space. The objective of the poisoning adversary is to increase the probability of this bad property over the training
process. We then studied the power of poisoning adversaries in achieving this objective.

Another aspect of poisoning adversaries that must be defined is their tampering pattern. For instance, one can imagine a
poisoning adversary who looks at the training data and changes a fraction of the training examples arbitrarily. Alternatively, a
weaker adversary may only add some poisoned data to the original dataset, without knowing the other examples in training set3.
The adversaries could also be limited in their computational power or the way they label poisoned data. In my research, I studied
power of poisoning adversaries based on their tampering pattern and their computational power.

Inherent lower bound on the power of poisoning attacks Throughout my research, I have studied the inherent vulnerability
of machine learning against poisoning adversaries with different tampering patterns. Bellow I summarize these results.

• Adversaries with random tampering locations: In [MM17], we studied poisoning adversaries who could substitute a
random p fraction of a training examples and replace them with other examples4. We showed that in this model there are
adversaries who increase the probability of an arbitrary bad property by Ω(p) if the probability of getting the bad property is
originally constant. The adversaries in this attack model, called p-tampering model, are very powerful in the sense that they
can achieve these bounds with many restrictions such as (only) black-box access to the training algorithm, working online,
and using the correct labels for the training examples. In a follow up work [MM19], we further improved our bounds
on the power of such adversaries and introduced new attacks. We also proved that our attacks could be implemented in
polynomial time, given oracle access to the training algorithm and enough samples from the distribution of instances.

• Adversaries who choose tampering locations: One can define a stronger poisoning adversary that has control over the
tampering locations as well. In [MDM19], we studied these type of adversaries and proved that there are adversaries
who select Õ(

√
m) (m is the sample complexity of the learning algorithm) number of training examples, replace them

with other correctly labeled training examples, and increase the probability of the bad property to almost 1, if the original
probability is 1/poly(m). In [MM19], we provided an algorithm for adversary that could achieve almost the same bound in
polynomial time, as long as it has oracle access to training algorithm and enough samples from the distribution. However,
this polynomial time algorithm could not cover the cases were the probability of the bad property could potentially decrease
by sample complexity. Later, using our optimal computational concentration of measure for product spaces, introduced
in [EMM20], we improved our poisoning attacks by providing a polynomial time algorithm that could achieve the same
bounds of [MDM19] even in the case of vanishing probability of the bad property.

• Byzantine adversaries in multi-party learning: Multi-party learning enables distinct parties to combine their data and
train a shared model. With the recent advances in collaborative machine learning, it has become very important to study
the effect of malicious parties who provide corrupted data. In [MMM19], we introduced a new model of (k, p) poisoning
adversaries, in multi-party learning setting, where there are m parties who provide the training data. Among those, k are
partially corrupted meaning that for each training example provided (by the partially corrupted parties) there is a probability
p that the example is generated by the adversary. For k = m, this model becomes the notion of p-tampering poisoning,
and for p = 1 it coincides with the standard notion of static corruption in multi-party computation. we showed, in this
setting, for any m-party learning protocol there exist a computationally bounded (k, p) poisoning adversary that increases
the probability of the bad property by Ω(p · k/m). Our (k, p) poisoning attacks are online and only use correct labels for
the corrupted training data. Moreover, we showed that our attack can be implemented in polynomial time as long as it has
access to sampling oracle for distributions of all the parties as well as oracle access to the training algorithm.

2For a survey on different goals of adversaries see Marco Barreno, Blaine Nelson, Anthony D Joseph, and J Doug Tygar. “The security of machine learning”.
In: Machine Learning 81.2 (2010), pp. 121–148

3These two models are known as strong contamination model and Huber’s contamination model. For more details see Ilias Diakonikolas and Daniel M Kane.
“Recent Advances in Algorithmic High-Dimensional Robust Statistics”. In: arXiv preprint arXiv:1911.05911 (2019).

4This adversarial model is tightly related to valiant’s malicious noise model. For more details see Michael Kearns and Ming Li. “Learning in the presence of
malicious errors”. In: SIAM Journal on Computing 22.4 (1993), pp. 807–837.

3



Tampering Attacks in Cryptography
In addition to applications in machine learning, my work on robustness of random process has important implications in Cryp-
tography. Following, I explain the implication of my work in tamperable cryptography and coin tossing.

Blockwise attacks on the randomness of cryptographic primitives. Austrin et. al5 studied the notion of bitwise p-tampering
attacks over randomized algorithms in which an efficient virus gets to control each bit of the randomness with independent
probability p in an online way. They showed how to break certain privacy primitives (e.g., encryption, commitments, etc.)
through bitwise p-tampering. Their attacks were heavily relying on the adversary being able to tamper with each bit with
independent probability p. However, randomness is usually generated in blocks rather than bits. We generalized the result
of Austrin et. al. to the blockwise setting and introduced new p-tampering attacks that could break the semantic security of
any encryption scheme [MM17]. Our p-tampering attacks also yield an algorithmic proof on the impossibility of extracting an
unbiased random bit form a so called blockwise Santha-Vazirani sources of randomness.

Lower bounds for coin tossing protocols. Many of my work in security of machine learning are inspired by, and have direct
implication to, coin tossing protocols. Our computational concentration of measure results of [MM19] and [EMM20] had direct
implication on the power of adversaries in single-round multi-party coin tossing protocols. We introduced an adversarial model
where the adversary observes messages sent by parties one by one and after seeing each message is allowed to perturb with it.
We proved that in this model, there is always an adversary who tampers

√
m number of messages and biases the average of the

protocol to almost 1. Surprisingly, we are able to achieve these bounds by a polynomial time attack. Moreover, in [MMM19],
we introduced a new model of attack to an m-party coin tossing protocol where an adversary selects k parties prior to the start of
the protocol. It then controls each message sent by each of those parties with probability p. This model generalizes both static
corruption model (when p = 1) and the p-tampering model (when m = k). We showed that in the presence of such adversaries,
the output of any m-party coin tossing protocol can be biased by Ω(k · p/m).

Future plans
Provable robustness in machine learning My research has so far developed a theoretical basis for limitation of worst-case
robustness for machine learning, based on properties of high dimensional data such as (computational) concentration of measure.
I intend to continue my research on understanding limitation of learning algorithms especially those which are due to properties
of high dimensional data or computational constraints. Furthermore, I would like to work on designing and improving machine
learning algorithms with provable robustness guarantees. I also plan to expand my research to adversarial robustness in different
learning settings such as online learning and control.

Other aspects of automated decision making. Today’s application of machine learning spans across many different areas
from finance to health to infrastructures and even public security. However, this approach raises new concerns such as fairness
and privacy of data for stakeholders. To ensure an unbiased and accountable decision making, machine learning algorithms need
to be designed for fairness. Similarly, the privacy of information is another major concern which can limit application of machine
learning algorithms in sensitive areas such as health. Currently, these topics are becoming more and more important in the field
and I am interested in expanding my research to understanding the limitations of provable fairness and privacy of data as well as
the trade-offs between the accuracy, fairness and privacy.

Building more bridges between cryptography and machine learning. I intend to investigate power and limitation of cryp-
tographic primitives, specially those with applications in machine learning. There are cryptographic tools (e.g. Multi party
computation, Homomorphic Encryption, Differential Privacy) that can facilitate improvement of “safety” of machine learning.
Yet, the applications are limited due to efficiency constraints. Developing new cryptographic tools that are machine learning
friendly and machine learning techniques that are cryptography friendly is my other future plan.

5Per Austrin, Kai-Min Chung, Mohammad Mahmoody, Rafael Pass, and Karn Seth. “On the impossibility of cryptography with tamperable randomness”.
In: Algorithmica 79.4 (2017), pp. 1052–1101
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